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Abstract

    High-performance input queued switches achieve good 
performance with low cost. However, with the appearance of 

optical techniques, the line rate is much higher than before. 

Scheduling algorithms require not only good performance in 
delay and stability but fast speed and simple implementation as 

well. A variety of scheduling algorithms for Virtual Output 

Queuing (VOQ) packet switch architecture are proposed. 
Round-robin scheduling algorithms are fast and simple to 

implement in hardware. In particular, a group of fully 

desynchronized round-robin scheduling algorithms  SRR 
(static round robin matching), proposed recently, achieve pretty 
good delay performance while easy to implement. However, 

they are not stable under non-uniform traffic. Randomized 

algorithms are stable under any admissible traffic, however 
their delay is high and hardware implementation is complex. 

Based on the concept of randomized algorithms and SRR, we 

propose a group of new scheduling algorithms, DRDSRR, the 
improved version of DRDSRR, ARDSRR and the variations of 

ARDSRR. They not only ensure stability but also have good 

performance and simple implementation. We have proved 
stability in the paper. 

1. Introduction 

    Nowadays, input queued (IQ) switches have become 

dominant in high speed switching. IQ switches only have an 

internal speedup equivalent to the line rate. However, it is well 

known that Head of Line Blocking (HOL) limits the throughput 

of an IQ switch with crossbar fabric to 58.6% [1] under uniform 

traffic when a single FIFO queue is deployed at each input. An 

alternative architecture, the virtual output queuing (VOQ) [2] 

can eliminate HOL blocking entirely while achieving 

scalability. Instead of a single FIFO queue, separate queues for 

different outputs are maintained at each input.

Variable scheduling algorithms are proposed. Maximum 

weight matching (MWM) algorithms perform well and can 

achieve 100% throughput, i.e. stable under any traffic, for 

example, LQF, OCF, LPF [3][4], etc. However they are 

impractical and too complex to implement in hardware. 

Maximal size matching (MSM) algorithms are practical and 

perform well under uniform traffic. However they are not stable 

under non-uniform traffic, such as iSLIP [5], FIRM [6], etc. 

Recently, a group of fully desynchronized round-robin 

scheduling algorithms, SRR (static round-robin) [7] are 

proposed. They perform much better than iSLIP and FIRM and 

are shown to achieve a low delay performance. However, they 

are inevitably unstable under non-uniform traffic, since they are 

MSM algorithms.  

    Randomized algorithms are stable under any traffic and only 

with linear complexity. However their delay is high compared 

with MSM algorithms.  This is true even for non-uniform traffic 

as long as the maximal size matching algorithms are operating 

in their “stable” region [12]. The main reason for this is that the 

randomized algorithms have been designed with the objective 

of making them stable, rather than achieving a small average 

delay. Another problem with randomized algorithm is that they 

are still complex in hardware implementation. For example the 

“MERGE” procedure in LAURA and SERENA may induce 

large delay that degrade the performance of the algorithms [9]. 

In this paper, we have attempted to exploit the advantages of 

both randomized algorithms and SRR. We propose a group of 

algorithms, which are not only stable under any traffic but also 

have low delay and simple to implement as well.  

    The rest of paper is organized as follows: Section 2 

introduces the round-robin scheduling algorithms  SRR. In 

Section 3, we discuss randomized algorithms. We present the 

DRDSRR algorithm and its improved version in Section 4. In 

Section 5, ARDSRR is proposed and also some variations of 

ARDSRR are provided. Finally, Section 6 concludes the paper. 

2. A group of fully desynchronized round-robin 

scheduling algorithms 

    All existing round-robin scheduling algorithms are run with 

several iterations and each iteration consists of three steps: 

request, grant and accept. 

Based on the observation of desynchronization of pointers 

leading to good performance, recently, a group of new round-

robin scheduling algorithms  SRR (static round-robin) are 

proposed. The basic idea is to keep full pointer 

desychronization. There are different variations of SRR, which 

are SSRR (single static round-robin), DSRR (double static 

round-robin) and RDSRR (rotating DSRR) [7]. Among them, 

RDSRR performs the best. In RDSRR, the initialization of 

pointers are kept fully desynchronized. Both the input pointers 

and output pointers are set to some initial pattern such that there 

is no duplication among the pointers. At each time slot, pointers 
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(b) At time t + 1 let R(t + 1) = Z(t + 1), the matching

visited by the Hamiltonian walk.

of both input arbiters and output arbiters are always

incremented by one (modulo N).

In the second step of Grant, to achieve fairness, clockwise

and counter-clockwise rotations are done alternatively, each for 

one time slot, to search for the input to send grant.

(c) Let S(t + 1) = arg S,Q(t + 1)
)}1(),({

max
tRtSS

The achievements with RDSRR are: (a) Lower delay (b)

With clockwise and counter-clockwise rotation scheme, each 

input has a chance to be served. (c) Easy to implement in 

hardware.

Lemma 2 (Paolo Giaccone [9]) Consider an input-queued

switch with admissible Bernoulli i.i.d.  inputs. Let Q(t) be the

queue-size process that results when the switch uses scheduling
algorithm B. Let WB(t) denote the weight of the schedule used

by B at time t, and let W*(t) be the weight of MWM given the

same queue-size process Q(t). If there exists a positive constant
c such that the property

3. Randomized algorithms 

WB(t) W*(t)-c holds for all t, then the algorithm B 

is stable.

Randomized algorithms are based on several observations: (a)

the state of the switch (for example, the lengths of its queues)

changes little during successive time slots. This indicates it is

possible to use the matching at time t for deriving the matching

at time t + 1. (b) A randomly generated matching by a good

scheme can be used to improve the matching used at time t for

obtaining the matching at time t + 1.

Lemma 3 (Paolo Giaccone [9]) An input-queued switch using

Algo2 is stable under all admissible Bernoulli i.i.d. inputs. 

    Compare Algo2 with Algo1, derandomization is used in

Algo2, which is much easier to implement in hardware than

random scheme.

3.1 Algo1: a randomized scheme with memory 4. DRDSRR algorithm 

Based on the above concepts, a basic randomized algorithm

is proposed by Tassiulas [8].
In Section 3, there is a proof for the stability of Algo2. We

can see that when an algorithm uses memory and the 

Hamiltonian walk  the derandomzation scheme, it is stable.

This property will be used as part of the design of our DRDSRR

(derandomized RDSRR) algorithm.

Algo1:

(a) Let S(t) be the schedule used at time t.

(b) At time t + 1 choose a matching R(t + 1) uniformly at

random from the set of all N! possible matchings.

(c) Let S(t + 1) = arg S,Q(t +1)  (Q(t +1) is 

the queue-lengths matrix at time t + 1.) 

)}1(),({
max

tRtSS
4.1 Specification of DRDSRR

By the above observations, we now give the specification of

DRDSRR:

Initialization. The output pointers are set to some initial

pattern such that there is no duplication among the pointers. The

same is done for the input pointers.

Lemma 1 (Tassiulas [8]). Algo1 is stable under any Bernoulli

i.i.d. admissible input.

 Step 1: Let S(t - 1) be the schedule used at previous time

slot. At current time slot t, let R(t) = Z(t), the matching visited

by the Hamiltonian walk.

3.2 Hamiltonian walk on the set of all  matchings 

We construct a graph with N! nodes, each corresponding to a 

distinct matching, and all possible edges between these nodes.

A Hamiltonian walk on this graph is to visit each of the N!

nodes exactly once during times t = 1,…, N!. Extend t > N! by

defining Z(t) = Z(t mod N!). For example, when N = 3, we

obtain such a Hamiltonian walk: Z(1) = (1, 2, 3), Z(2) = (1, 3,

2), Z(3) = (3, 1, 2), Z(4) = (3, 2, 1), Z(5) = (2, 3, 1), Z(6) = (2, 1,

3), Z(7) = Z(1), and Z(8) = Z(2),… ((1, 2, 3) denotes a 

permutation ( (1), (2), (3))).

Step 2: Request. Each input sends a request to every output

for which it has a queued cell.

Step 3: Grant. If an output receives any requests, it chooses

the one that appears next in a fixed, round-robin schedule

starting from the highest priority element. To achieve fairness,

clockwise and counter-clockwise rotations of the pointers are 

done alternatively, each for one time slot. The output notifies

each input whether or not its request was granted. The pointer to 

the highest priority element of the round-robin schedule is

always incremented by one (modulo N) whether there is a grant 

or not.
3.3 Algo2: a derandomized algorithm of Algo1 

Based on the concept of Hamiltonian walk on the set of all

matchings, Algo2  a derandomization of Algo1 is proposed

by Paolo Giaccone [9].

Step 4: Temporal Accept. If an input receives a grant, it 

selects one that appears next in a fixed, round-robin schedule

starting from the highest priority element. The pointer to the

highest priority element of the round-robin schedule is always

incremented by one (modulo N) whether there is a grant or not. 

Algo2:

(a) Let S(t) be the schedule used at time t.
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Step 2 to Step 4 are iteratively executed, resulting in a 

matching, we call it M’(t) (unmatched inputs are matched to

unmatched outputs arbitrarily with no weight).

DRDSRR and DRDSRR(v2) have good performance under

both uniform traffic and uniform bursty traffic [13]. They have

the advantage of round-robin scheduling algorithms. For non-

uniform traffic, they have much better performance than other

algorithms.
Step 5: Accept. Let M(t) = arg S,Q(t) .

M(t) is the present schedule. The corresponding inputs send

accepts to corresponding outputs. 

)}('),(),1({
max

tMtRtSS

Figure 1 shows the results under diagonal traffic. DRDSRR

and DRDSRR(v2) have much better performance than all the

other algorithms. Surprisingly, their performance is comparable

with MWM.

Figure 2 shows the results under hotspot traffic. DRDSRR

has good performance as well. Especially under high load,

DRDSRR has a much lower delay than all the other algorithms.

DRDSRR(v2) has even better performance than DRDSRR and

it is comparable with MWM.

4.2 Stability of DRDSRR

Proof. DRDSRR uses the Hamiltonian walk with memory,

<M(t),Q(t)> <M(t - 1),Q(t)> and <M(t),Q(t)> <Z(t),Q(t)>.

Therefore, Lemma 2 and Lemma 3 apply, this is sufficient to

prove its stability.
5. ARDSRR algorithm 

4.3 An improved version of DRDSRR In Section 4, we propose DRDSRR and its improved version,

DRDSRR(v2) to achieve low delay. Howeimplementation even

simpler while still maintain good performance?The RDSRR scheduling algorithm with multiple iterations

can result in a maximal matching. However, the matchings

determined by DRDSRR and its variations are not of maximal

size. Queue-lengths are only used to select the heaviest

matching. It is therefore possible that the resulting matching is

heavy, but not of maximal size. Therefore, we can make

DRDSRR a maximal size matching. Suppose there are k

unmatched inputs and outputs left by the algorithm. We

augment the matchings between those inputs and outputs

repeatedly until no more connections can be made. This is easy

to implement. The time complexity is at most O(k2). The

maximal version of DRDSRR is named as DRDSRR(v2), Its 

performance is comparable with MWM.

    We have several observations.

First, in DRDSRR, the last step compares the weight of three 

matchings, namly the matching of last time slot, the matching

from Hamiltonian walk and the matching from current RDSRR

Figure 3 shows the contributions of these three matchings,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

32x32 switch under diagonal traffic

Normalized load

A
v
e
ra

g
e
 d

e
la

y

iSLIP

FIRM

RDSRR

SERENA

LAURA

DRDSRR

DRDSRR(v2)

MWM(LQF)

Figure 1. Average delay under diagonal traffic.
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Figure 2. Average delay under hotspot traffic.

The complexity of DRDSRR is lower than other approximate

MWM algorithms [13] and possible hardware design is given in

[13].

4.4 Simulation results 

In our simulation, we consider a 32x32 switch. The traffic is 

Bernoulli i.i.d. and admissible. Uniform traffic, uniform bursty

traffic and various non-uniform traffic patterns, namely the

diagonal and hotspot cases are considered.

    The traffic matrix of hotspot traffic is like (4x4 switch):

    The traffic matrix of the diagonal traffic is like (4x4 switch):

xxxx

xxxx

xxxx

xxxx

2

2

2

2
Output 1 is the hot-spot with 

higher rate of traffic destined to

it, and all other traffic is 

distributed to other outputs

uniformly.

xx

xx

xx

xx

001

100

010

001 The traffic is concentrated on 

two diagonals. One is heavier

than the other. (x = 2/3)
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i.e. in which percentage, each matching is selected as the final 

scheduling matching.

  Case 1: If there is a grant with a new arrival (at most one), it

selects it as temporal accept. 

When the load is light, almost all the matchings selected are

from RDSRR scheduling. When the load is heavy, more and

more matchings are derived from the matching of last time slot,

since heavy load results in the accumulation of queue lengths

and the heavy queues with large possibility remain heavy in 

successive time slots. In all ranges, very little percentage is 

derived from Hamiltonian walk matching.

Case 2: If there is no grant with a new arrival, it selects the

one that appears next in a fixed, round-robin schedule starting

from the highest priority element.

The pointer to the highest priority element of the round-robin

schedule is always incremented by one (modulo N) whether

there is a grant or not. 

Step 2 to Step 4 are iteratively executed, resulting in a 

matching, we call it M’(t) (unmatched inputs are matched to

unmatched outputs arbitrarily with no weights).

Second, the accumulation of queue lengths is due to arrivals 

and the arrival process is also a source of randomness.

Based on the above observations, we devise a new algorithm,

termed as ARDSRR (arrival RDSRR). In this Algorithm, we 

remove the use of Hamiltonian walk matching in order to make

the hardware implementation even simpler and exploit the use

of arrival information in obtaining RDSRR matching to achieve

good performance.

Step 5: Accept. Let M(t) = arg S,Q(t) . M(t)

is the present schedule. The corresponding inputs send accepts

to corresponding outputs.

)}('),1({
max

tMtSS

5.2 Stability of ARDSRR 
5.1 The specification of ARDSRR 

Proof. Follow from Lemma 1, and observe the randomness in

choosing the matching is in the grant and temporal accept steps. 

The arrival is also a source of randomness. This is sufficient to

ensure its stability.

Initialization. The output pointers are set to some initial

pattern such that there is no duplication among the pointers. The

same is done for the input pointers.

Step 1: Let S(t - 1) be the schedule used at previous time slot.

Step 2: Request. Each input sends a request to every output

for which it has a queued cell.
5.3 A variation of ARDSRR: PARDSRR 

Step 3: Grant. If an output receives any requests, We find some observations in ARDSRR.
Case 1: If there are requests with a new arrival, it chooses

the one with a new arrival that appears next in a fixed, round-

robin schedule starting from the highest priority element.

1) If input i1 has a new arrival to output j1, and at the same

time input i1 has a request with no arrival to output j2. If output 

j1 grants input i1, then the request from i1 to j2 will certainly not

be accepted. We should avoid letting output j2 grant input i1. In 

stead, if output j2 grants other inputs, it will increase the instant

throughput.

Case 2: If there is no request with a new arrival, it chooses

the one as usual, i.e. the one that appears next in a fixed, round-

robin schedule starting from the highest priority element.

To achieve fairness, clockwise and counter-clockwise

rotations of the pointers are done alternatively, each for one 

time slot. The output notifies each input whether or not its 

request was granted. The pointer to the highest priority element

of the round-robin schedule is always incremented by one

(modulo N) whether there is a grant or not. 

2) For an output j, if there are two requests from input i1 and

input i2, but input i1 has a new arrival with the request and input

i2 has no arrival with the request. For sure the request from input

i2 will not be granted. We can avoid sending request from input

i2 to output j.

We can improve ARDSRR by taking request with a new

arrival as higher priority over those without arrivals and deal

with them first. As a result, we name the new scheme as 

PARDSRR (priority arrival RDSRR). The specification of

PARDSRR is as following:

Step 4: Temporal Accept. If an input receives a grant,
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Initialization. The output pointers are set to some initial

pattern such that there is no duplication among the pointers. The

same is done for the input pointers.

Step 1: Let S(t - 1) be the schedule used at previous time slot.

Step 2: Request. Each input sends a request to every output

for which it has a queued cell. If there is a new arrival, the input

issues an arrival signal to the output.

Step 3: Matching with arrivals. Check each output. If there

are requests with arrivals, the output chooses the one with a new

arrival that appears next in a fixed, round robin schedule

starting from the highest priority element and sends grant to the
Figure 3. Percentage of different matchings selected as final

scheduling under diagonal traffic.
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Figure 4. Average delay under uniform traffic. Figure 5. Average delay under uniform bursty traffic. 

corresponding input. The input which receives grant, sends a 

temporal accept. 
DRDSRR. However, PARDSRR and WARDSRR are better

than ARDSRR. They have much lower delay than SERENA 

and LAURA when the load is under 0.9. In the range of higher

load, they are very close to SERENA and still better than

LAURA.

Step 4: Matching without arrivals. Consider all the

unmatched inputs and outputs left by Step 3. Do as usual 

RDSRR scheduling. We obtain a matching from Step 3 and this

step, we call it M’(t) (unmatched inputs are matched to Figure 7 shows the results under hotspot traffic. ARDSRR is 

not very good under high load. However, PARDSRR and

WARDSRR perform very well. They have much lower delay

than SERENA and LAURA, even much better than DRDSRR. 

unmatched outputs arbitrarily with no weights).

Step 5: Accept. Let M(t) = arg S,Q(t) . M(t)

is the present schedule. The corresponding inputs send accepts

to corresponding outputs.

)}('),1({
max

tMtSS

Surprisingly, their performance is comparable with MWM.

Also, WARDSRR is slightly better than PARDSRR. 

5.6 Complexity analysis and hardware implementation

5.4 A variation of ARDSRR: WARDSRR 
PARDSRR and WARDSRR perform well and have

simpler implementation than DRDSRR, since they avoid the

implementation of Hamiltonian walk matching. Their difference

in computing matching M’(t) will not increase the complexity

of implementation.

In WARDSRR (weighted arrival RDSRR), we make a

modification in Step 3 of PARDSRR. In PARDSRR, a round-

robin scheme is used when selecting matches with arrivals.

WARDSRR will select the matches with arrivals by considering

the queue length. Step 3 of WARDSRR is as following: In PARDSRR, we only need to issue arrival signals along

with sending requests and in the grant step, let the first iteration

deal with requests with arrivals in round-robin, and the

following iterations do as usual.

Step 3: Matching with arrivals. Check each output. If there

are requests with arrivals, the output chooses the one with a new

arrival that has the heaviest weight and sends grant to the

corresponding input. The input, which receives grant, sends a 

temporal accept. 

In WARDSRR, since there is at most one arrival from each 

input at one time slot, all the outputs together receive at most N
arrival signals, which means at most the comparisons cost 
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5.5 Simulation results

Figure 4 shows the results under uniform traffic. All the

round-robin scheduling algorithms are run with 3 iterations.

ARDSRR is not good under high load. However, PARDSRR

and WARDSRR are much better than ARDSRR, since the 

instant throughput increases. They are comparable with 

DRDSRR.

Figure 5 shows the results under uniform bursty traffic.

Again, all the round-robin scheduling algorithms are run with 3 

iterations. The performance of ARDSRR, PARDSRR and

WARDSRR are similar to the case of uniform traffic. 

Figure 6 compares all the algorithms under diagonal traffic.

ARDSRR, PARDSRR and WARDSRR are not as good as Figure 6. Average delay under diagonal traffic. 

Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC’03) 
1530-1346/03 $17.00 © 2003 IEEE 



algorithms.
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6. Conclusion 

Maximum weight matching algorithms perform very well

under non-uniform traffic, and are consequently stable.

However they are too complex to implement. Randomized

algorithms are shown to achieve stability under any admissible

traffic, but they induce a high delay compared with iterative

maximal matching algorithms and still complex in hardware

implementation. The group of SRR maximal matching

algorithms have good delay performance, but are not stable

under non-uniformtraffic. In this paper, we have proposed a 

group of algorithms, i.e. DRDSRR, its improved version,

ARDSRR and its variations, based on the concept of

randomized algorithms and RDSRR. They are all shown to be

stable under any admissible traffic while maintaining lower

delay performance, especially under non-uniform traffic. They

are also simple to implement, which makes them practical. We

have also demonstrated possible hardware design of these

Figure 8. Implementation of the PARDSRR scheme.
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Figure 9. Implementation of the modified RDSRR scheduler.
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